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2.0 Introduction

Our world is filled with limited resources. The amount of oil we can pump out of the
earth is limited. The amount of land available for garbage dumps and hazardous waste is
limited and, in many areas, diminishing rapidly. On a more personal level, each of us has
a limited amount of time in which to accomplish or enjoy the activities we schedule each
day. Most of us have a limited amount of money to spend while pursuing these activities.
Businesses also have limited resources. A manufacturing organization employs a limited
number of workers. A restaurant has a limited amount of space available for seating.
Deciding how best to use the limited resources available to an individual or a busi-
ness is a universal problem. In today’s competitive business environment, it is increas-
ingly important to make sure that a company’s limited resources are used in the most
efficient manner possible. Typically, this involves determining how to allocate the
resources in such a way as to maximize profits or minimize costs. Mathematical
programming (MP) is a field of management science that finds the optimal, or most effi-
cient, way of using limited resources to achieve the objectives of an individual or a busi-
ness. For this reason, mathematical programming often is referred to as optimization.

2.1 Applications of
Mathematical Optimization

To help you understand the purpose of optimization and the types of problems for
which it can be used, let’s consider several examples of decision-making situations in
which MP techniques have been applied.

Determining Product Mix. Most manufacturing companies can make a variety of
products. However, each product usually requires different amounts of raw materials
and labor. Similarly, the amount of profit generated by the products varies. The manager
of such a company must decide how many of each product to produce to maximize
profits or to satisfy demand at minimum cost.

Manufacturing. Printed circuit boards, like those used in most computers, often have
hundreds or thousands of holes drilled in them to accommodate the different electrical
components that must be plugged into them. To manufacture these boards, a computer-
controlled drilling machine must be programmed to drill in a given location, then move
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18 Chapter 2 Introduction to Optimization and Linear Programming

the drill bit to the next location and drill again. This process is repeated hundreds or
thousands of times to complete all the holes on a circuit board. Manufacturers of these
boards would benefit from determining the drilling order that minimizes the total
distance the drill bit must be moved.

Routing and Logistics. Many retail companies have warehouses around the country
that are responsible for keeping stores supplied with merchandise to sell. The amount of
merchandise available at the warehouses and the amount needed at each store tends to
fluctuate, as does the cost of shipping or delivering merchandise from the warehouses
to the retail locations. Large amounts of money can be saved by determining the least
costly method of transferring merchandise from the warehouses to the stores.

Financial Planning. The federal government requires individuals to begin withdrawing
money from individual retirement accounts (IRAs) and other tax-sheltered retirement pro-
grams no later than age 70.5. There are various rules that must be followed to avoid paying
penalty taxes on these withdrawals. Most individuals want to withdraw their money in a
manner that minimizes the amount of taxes they must pay while still obeying the tax laws.

Optimization Is Everywhere

Going to Disney World this summer? Optimization will be your ubiquitous com-
panion, scheduling the crews and planes, pricing the airline tickets and hotel
rooms, even helping to set capacities on the theme park rides. If you use Orbitz to
book your flights, an optimization engine sifts through millions of options to find
the cheapest fares. If you get directions to your hotel from MapQuest, another opti-
mization engine figures out the most direct route. If you ship souvenirs home, an
optimization engine tells UPS which truck to put the packages on, exactly where on
the truck the packages should go to make them fastest to load and unload, and
what route the driver should follow to make his deliveries most efficiently.

(Adapted from: V. Postrel, “Operation Everything,” The Boston Globe, June 27, 2004.)

2.2 Characteristics of
Optimization Problems

These examples represent just a few areas in which MP has been used successfully. We
will consider many other examples throughout this book. However, these examples
give you some idea of the issues involved in optimization. For instance, each example
involves one or more decisions that must be made: How many of each product should
be produced? Which hole should be drilled next? How much of each product should be
shipped from each warehouse to the various retail locations? How much money should
an individual withdraw each year from various retirement accounts?

Also, in each example, restrictions, or constraints, are likely to be placed on the alter-
natives available to the decision maker. In the first example, when determining
the number of products to manufacture, a production manager probably is faced with a
limited amount of raw materials and a limited amount of labor. In the second example,
the drill never should return to a position where a hole has already been drilled. In the
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third example, there is a physical limitation on the amount of merchandise a truck can
carry from one warehouse to the stores on its route. In the fourth example, laws deter-
mine the minimum and maximum amounts that can be withdrawn from retirement
accounts without incurring a penalty. There might be many other constraints for these
examples. Indeed, it is not unusual for real-world optimization problems to have hun-
dreds or thousands of constraints.

A final common element in each of the examples is the existence of some goal or ob-
jective that the decision maker considers when deciding which course of action is best.
In the first example, the production manager can decide to produce several different
product mixes given the available resources, but the manager probably will choose the
mix of products that maximizes profits. In the second example, a large number of possi-
ble drilling patterns can be used, but the ideal pattern probably will involve moving the
drill bit the shortest total distance. In the third example, there are numerous ways mer-
chandise can be shipped from the warehouses to supply the stores, but the company
probably will want to identify the routing that minimizes the total transportation cost.
Finally, in the fourth example, individuals can withdraw money from their retirement
accounts in many ways without violating the tax laws, but they probably want to find
the method that minimizes their tax liability.

2.3 Expressing Optimization
Problems Mathematically

From the preceding discussion, we know that optimization problems involve three ele-
ments: decisions, constraints, and an objective. If we intend to build a mathematical
model of an optimization problem, we will need mathematical terms or symbols to rep-
resent each of these three elements.

2.3.1 DECISIONS

The decisions in an optimization problem often are represented in a mathematical
model by the symbols Xj, Xy, ..., Xn. We will refer to Xj, X, ..., X, as the decision
variables (or simply the variables) in the model. These variables might represent the
quantities of different products the production manager can choose to produce. They
might represent the amount of different pieces of merchandise to ship from a warehouse
to a certain store. They might represent the amount of money to be withdrawn from dif-
ferent retirement accounts.

The exact symbols used to represent the decision variables are not particularly im-
portant. You could use Zy, 7y, . . . , Z,, or symbols like Dog, Cat, and Monkey to represent
the decision variables in the model. The choice of which symbols to use is largely a mat-
ter of personal preference and might vary from one problem to the next.

2.3.2 CONSTRAINTS

The constraints in an optimization problem can be represented in a mathematical model
in several ways. Three general ways of expressing the possible constraint relationships
in an optimization problem are:

A “less thag or equal to” constraint: fXy, X ..., Xn) <b

A “greater than or equal to” constraint: fXe, X, ..., Xp) =D

An “equal to” constraint: fXy, X, ..., Xn)=b
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In each case, the constraint is some function of the decision vartables that must be
less than or equal to, greater than or equal to, or equal to some specific value (repre-
sented above by the letter b). We will refer to f{X3, X, . . ., Xp) as the left-hand-side (LHS)
of the constraint and to b as the right-hand-side (RHS) value of the constraint.

For example, we might use a “less than or equal to” constraint to ensure that the total
labor used in producing a given number of products does not exceed the amount of
available labor. We might use a “greater than or equal to” constraint to ensure that the
total amount of money withdrawn from a person’s retirement accounts is at least the
minimum amount required by the IRS. You can use any number of these constraints to
represent a given optimization problem depending on the requirements of the situation.

2.3.3 OBJECTIVE

The objective in an optimization problem is represented mathematically by an objective
function in the general format:

MAX (or MIN):  f(Xy, Xa, ..., Xn)

The objective function identifies some function of the decision variables that the de-
cision maker wants to either MAXimize or MINimize. In our earlier examples, this func-
tion might be used to describe the total profit associated with a product mix, the total
distance the drill bit must be moved, the total cost of transporting merchandise, or a
retiree’s total tax liability.

The mathematical formulation of an optimization problem can be described in the
general format:

MAX (or MIN): foXy, Xo, .., Xa) 2.1
Subject to: Ay, Xo, ., X)) <bg 2.2
FlXe, Xo, .o, Xn) = by 2.3
fm(Xl/ XZ/ ceey Xn) = bm 24

This representation identifies the objective function (equation 2.1) that will be
maximized (or minimized) and the constraints that must be satisfied (equations 2.2
through 2.4). Subscripts added to the f and b in each equation emphasize that the
functions describing the objective and constraints can all be different. The goal in opti-
mization is to find the values of the decision variables that maximize (or minimize) the
objective function without violating any of the constraints.

2.4 Mathematical
Programming Techniques

Our general representation of an MP model is just that—general. You can use many
kinds of functions to represent the objective function and the constraints in an MP
model. Of course, you always should use functions that accurately describe the objec-
tive and constraints of the problem you are trying to solve. Sometimes, the functions in
a model are linear in nature (that is, they form straight lines or flat surfaces); other times,
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they are nonlinear (that is, they form curved lines or curved surfaces). Sometimes, the
optimal values of the decision variables in a model must take on integer values (whole
numbers); other times, the decision variables can assume fractional values.

Given the diversity of MP problems that can be encountered, many techniques have
been developed to solve different types of MP problems. In the next several chapters, we
will look at these MP techniques and develop an understanding of how they differ and
when each should be used. We will begin by examining a technique called linear
programming (LP), which involves creating and solving optimization problems with
linear objective functions and linear constraints. LP is a very powerful tool that can be
applied in many business situations. It also forms a basis for several other techniques
discussed later and is, therefore, a good starting point for our investigation into the field
of optimization.

2.5 An Example LP Problem

We will begin our study of LP by considering a simple example. You should not inter-
pret this to mean that LP cannot solve more complex or realistic problems. LP has been
used to solve extremely complicated problems, saving companies millions of dollars.
However, jumping directly into one of these complicated problems would be like start-
ing a marathon without ever having gone out for a jog—you would get winded and
could be left behind very quickly. So we'll start with something simple.

Blue Ridge Hot Tubs manufactures and sells two models of hot tubs: the Aqua-Spa
and the Hydro-Lux. Howie Jones, the owner and manager of the company, needs to
decide how many of each type of hot tub to produce during his next production
cycle. Howie buys prefabricated fiberglass hot tub shells from a local supplier and
adds the pump and tubing to the shells to create his hot tubs. (This supplier has the
capacity to deliver as many hot tub shells as Howie needs.) Howie installs the same
type of pump into both hot tubs. He will have only 200 pumps available during his
next production cycle. From a manufacturing standpoint, the main difference be-
tween the two models of hot tubs is the amount of tubing and labor required. Each
Aqua-Spa requires 9 hours of labor and 12 feet of tubing. Each Hydro-Lux requires
6 hours of labor and 16 feet of tubing. Howie expects to have 1,566 production labor
hours and 2,880 feet of tubing available during the next production cycle. Howie
earns a profit of $350 on each Aqua-Spa he sells and $300 on each Hydro-Lux he
sells. He is confident that he can sell all the hot tubs he produces. The question is,
how many Aqua-Spas and Hydro-Luxes should Howie produce if he wants to max-
imize his profits during the next production cycle?

2.6 Formulating LP Models

The process of taking a practical problem—such as determining how many Aqua-Spas
and Hydro-Luxes Howie should produce—and expressing it algebraically in the form
of an LP model is known as formulating the model. Throughout the next several chap-
ters, you will see that formulating an LP model is as much an art as a science.

2.6.1 STEPS N FORMULATING AN LP MODEL

There are some general steps you can follow to help make sure your formulation of a par-
ticular problem is accurate. We will walk through these steps using the hot tub example.
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Understand the problem. This step appears to be so obvious that it hardly seems
worth mentioning. However, many people have a tendency to jump into a problem
and start writing the objective function and constraints before they really under-
stand the problem. If you do not fully understand the problem you face, it is unlikely
that your formulation of the problem will be correct.

The problem in our example is fairly easy to understand: How many Aqua-Spas
and Hydro-Luxes should Howie produce to maximize his profit, while using no
more than 200 pumps, 1,566 labor hours, and 2,880 feet of tubing?

Identify the decision variables. After you are sure you understand the problem,
you need to identify the decision variables. That is, what are the fundamental deci-
sions that must be made to solve the problem? The answers to this question often
will help you identify appropriate decision variables for your model. Identifying the
decision variables means determining what the symbols Xi, Xy, . . ., X represent in
your model.

In our example, the fundamental decision Howie faces is this: How many Aqua-
Spas and Hydro-Luxes should be produced? In this problem, we will let X; represent
the number of Aqua-Spas to produce and X; represent the number of Hydro-Luxes to
produce.

State the objective function as a linear combination of the decision variables.
After determining the decision variables you will use, the next step is to create the
objective function for the model. This function expresses the mathematical relation-
ship between the decision variables in the model to be maximized or minimized.

In our example, Howie earns a profit of $350 on each Aqua-Spa (X;) he sells and
$300 on each Hydro-Lux (Xy) he sells. Thus, Howie’s objective of maximizing the
profit he earns is stated mathematically as:

MAX: 350X; + 300X,

For whatever values might be assigned to X; and Xj, the previous function calcu-
lates the associated total profit that Howie would earn. Obviously, Howie wants to
maximize this value.

State the constraints as linear combinations of the decision variables. As men-
tioned earlier, there are usually some limitations on the values that can be assumed
by the decision variables in an LP model. These restrictions must be identified and
stated in the form of constraints.

In our example, Howie faces three major constraints. Because only 200 pumps are
available and each hot tub requires one pump, Howie cannot produce more than a
total of 200 hot tubs. This restriction is stated mathematically as:

1X7 + 1X; <200

This constraint indicates that each unit of X; produced (that is, each Aqua-Spa
built) will use one of the 200 pumps available—as will each unit of X, produced (that
is, each Hydro-Lux built). The total number of pumps used (represented by 1X; +
1X,) must be less than or equal to 200.

Another restriction Howie faces is that he has only 1,566 labor hours available
during the next production cycle. Because each Aqua-Spa he builds (each unit of Xy)
requires 9 labor hours and each Hydro-Lux (each unit of X;) requires 6 labor hours,
the constraint on the number of labor hours is stated as:

9X; + 6X; < 1,566
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The total number of labor hours used (represented by 9X; + 6X;) must be less
than or equal to the total labor hours available, which is 1,566.

The final constraint specifies that only 2,880 feet of tubing is available for the next
production cycle. Each Aqua-Spa produced (each unit of X;) requires 12 feet of tub-
ing, and each Hydro-Lux produced (each unit of X,) requires 16 feet of tubing. The
following constraint is necessary to ensure that Howie’s production plan does not
use more tubing than is available:

12X; + 16X, < 2,880

The total number of feet of tubing used (represented by 12X; + 16X;) must be less
than or equal to the total number of feet of tubing available, which is 2,880.

5. Identify any upper or lower bounds on the decision variables. Often, simple upper
or lower bounds apply to the decision variables. You can view upper and lower
bounds as additional constraints in the problem.

In our example, there are simple lower bounds of zero on the variables X; and X,
because it is impossible to produce a negative number of hot tubs. Therefore, the
following two constraints also apply to this problem:

X:1>0
X;>0

Constraints like these are often referred to as nonnegativity conditions and are
quite common in LP problems.

2.7 Summary of the LP Model
for the Example Problem

The complete LP model for Howie’s decision problem can be stated as:

MAX: 350X; + 300X, 2.5
Subject to: 1IXi+ 1X; < 200 2.6
9X; +  6X; < 1,566 2.7

12X; + 16X, < 2,880 2.8

1Xq > 0 29

1X; > 0 2.10

In this model, the decision variables X; and X, represent the number of Aqua-Spas
and Hydro-Luxes to produce, respectively. Our goal is to determine the values for X;
and X, that maximize the objective in equation 2.5 while simultaneously satisfying all
the constraints in equations 2.6 through 2.10.

2.8 The General Form of an LP Model

The technique of linear programming is so named because the MP problems to which it
applies are linear in nature. That is, it must be possible to express all the functions in an
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LP model as some weighted sum (or linear combination) of the deeision variables. So,
an LP model takes on the general form:

MAX (or MIN): aX: + coXo+ -+ o Xn 211
Subject to: apXy + apXo+ -+ apXy < by 212
a Xy + apXo+ + -+ 4+ aXn > by 2.13
am1iX1 + amXo + +*+ + ampnXn = bm 2.14

Up to this point, we have suggested that the constraints in an LP model represent
some type of limited resource. Although this is frequently the case, in later chapters you
will see examples of LP models in which the constraints represent things other than lim-
ited resources. The important point here is that any problem that can be formulated in
the above fashion is an LP problem.

The symbols cj, ¢, . . ., ¢n in equation 2.11 are called objective function coefficients
and might represent the marginal profits (or costs) associated with the decision vari-
ables Xi, Xy, ..., Xy, respectively. The symbol a; found throughout equations 2.12
through 2.14 represents the numeric coefficient in the ith constraint for variable X;. The
objective function and constraints of an LP problem represent different weighted sums
of the decision variables. The b; symbols in the constraints, once again, represent values
that the corresponding linear combination of the decision variables must be less than or
equal to, greater than or equal to, or equal to.

You should now see a direct connection between the LP model we formulated for
Blue Ridge Hot Tubs in equations 2.5 through 2.10 and the general definition of an LP
model given in equations 2.11 through 2.14. In particular, note that the various symbols
used in equations 2.11 through 2.14 to represent numeric constants (that is, the ¢;, aj;,
and b;) were replaced by actual numeric values in equations 2.5 through 2.10. Also,
note that our formulation of the LP model for Blue Ridge Hot Tubs did not require the
use of “equal to” constraints. Different problems require different types of constraints,
and you should use whatever types of constraints are necessary for the problem at
hand.

2.9 Solving LP Problems:
An Intuitive Approach

After an LP model has been formulated, our interest naturally turns to solving it. But be-
fore we actually solve our example problem for Blue Ridge Hot Tubs, what do you think
is the optimal solution to the problem? Just by looking at the model, what values for X;
and X, do you think would give Howie the largest profit?

Following one line of reasoning, it might seem that Howie should produce as many
units of X; (Aqua-Spas) as possible because each of these generates a profit of $350,
whereas each unit of X; (Hydro-Luxes) generates a profit of only $300. But what is the
maximum number of Aqua-Spas that Howie could produce?

Howie can produce the maximum number of units of X; by making no units of X,
and devoting all his resources to the production of X;. Suppose we let X, =0 in the
model in equations 2.5 through 2.10 to indicate that no Hydro-Luxes will be produced.
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What then is the largest possible value of X;? If X; =0, then the inequality in equa-
tion 2.6 tells us:

X; < 200 2.15

So we know that X; cannot be any greater than 200 if X, = 0. However, we also have
to consider the constraints in equations 2.7 and 2.8. If X, = 0, then the inequality in
equation 2.7 reduces to:

9X; < 1,566 2.16

If we divide both sides of this inequality by 9, we find that the previous constraint is
equivalent to:

X1 <174 217

Now consider the constraint in equation 2.8. If X; = 0, then the inequality in equa-
tion 2.8 reduces to:

12X; < 2,880 2.18

Again, if we divide both sides of this inequality by 12, we find that the previous
constraint is equivalent to:

X1 <240 2.19

So, if X; =0, the three constraints in our model imposing upper limits on the value of
Xj reduce to the values shown in equations 2.15, 2.17, and 2.19. The most restrictive of
these constraints is equation 2.17. Therefore, the maximum number of units of X; that
can be produced is 174. In other words, 174 is the largest value X; can take on and still
satisfy all the constraints in the model.

If Howie builds 174 units of X; (Aqua-Spas) and 0 units of X, (Hydro-Luxes), he will
have used all of the labor that is available for production (9X; = 1,566 if X; = 174). How-
ever, he will have 26 pumps remaining (200 — X; = 26 if X; = 174) and 792 feet of tub-
ing remaining (2,880 — 12X; = 792 if X; = 174). Also, notice that the objective function
value (or total profit) associated with this solution is:

$350X; + $300X, = $350 X 174 + $300 X 0 = $60,900

From this analysis, we see that the solution X; = 174, X, = 0 is a feasible solution to the
problem because it satisfies all the constraints of the model. But is it the optimal solution?
In other words, is there any other possible set of values for X; and X; that also satisfies
all the constraints and results in a higher objective function value? As you will see, the
intuitive approach to solving LP problems that we have taken here cannot be trusted
because there actually is a better solution to Howie’s problem.

2.10 Solving LP Problems:
A Graphical Approach

The constraints of an LP model define the set of feasible solutions—or the feasible
region—for the problem. The difficulty in LP is determining which point or points in
the feasible region correspond to the best possible value of the objective function. For
simple problems with only two decision variables, it is fairly easy to sketch the feasible
region for the LP mbdel and locate the optimal feasible point graphically. Because the
graphical approach can be used only if there are two decision variables, it has limited
practical use. However, it is an extremely good way to develop a basic understanding of
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the strategy involved in solving LP problems. Therefore, we will use the graphical ap-
proach to solve the simple problem faced by Blue Ridge Hot Tubs. Chapter 3 shows how
to solve this and other LP problems using a spreadsheet.

To solve an LP problem graphically, first you must plot the constraints for the prob-
lem and identify its feasible region. This is done by plotting the boundary lines of the con-
straints and identifying the points that will satisfy all the constraints. So, how do we do
this for our example problem (repeated below)?

MAX: 350X; + 300X, 2.20
Subject to: 1X; + 1X; < 200 2.21
9X; + 6X; < 1,566 2.22

12X; + 16X, < 2,880 2.23

1X4 > 0 2.24

1X; > 0 2.25

2.10.1 PLOTTING THE FIRST CONSTRAINT

The boundary of the first constraint in our model, which specifies that no more than
200 pumps can be used, is represented by the straight line defined by the equation:

X; +X;=200 2.26

If we can find any two points on this line, the entire line can be plotted easily by
drawing a straight line through these points. If X; = 0, we can see from equation 2.26
that X; = 200. Thus, the point (X1, Xz) = (200, 0) must fall on this line. If we let X; =0,
from equation 2.26, it is easy to see that X, = 200. So, the point (X;, X;) = (0, 200) also
must fall on this line. These two points are plotted on the graph in Figure 2.1 and con-
nected to form the straight line representing equation 2.26.

Note that the graph of the line associated with equation 2.26 actually extends beyond
the X; and X; axes shown in Figure 2.1. However, we can disregard the points beyond
these axes because the values assumed by X; and X; cannot be negative (because we also
have the constraints given by X; > 0 and X; > 0).

The line connecting the points (0, 200) and (200, 0) in Figure 2.1 identifies the points
(X1, Xp) that satisfy the equality X; + X; = 200. But recall that the first constraint in the
LP model is the inequality X; + X; < 200. Thus, after plotting the boundary line of a con-
straint, we must determine which area on the graph corresponds to feasible solutions
for the original constraint. This can be done easily by picking an arbitrary point on
either side of (i.e., not on) the boundary line and checking whether it satisfies the origi-
nal constraint. For example, the point (X;, Xz) = (0, 0) is not on the boundary line of the
first constraint and also satisfies the first constraint. Therefore, the area of the graph on
the same side of the boundary line as the point (0, 0) corresponds to the feasible solu-
tions of our first constraint. This area of feasible solutions is shaded in Figure 2.1.

2.10.2 PLOTTING THE SECOND CONSTRAINT

Some of the feasible solutions to one constraint in an LP model usually will not sat-
isfy one or more of the other constraints in the model. For example, the point (X;, Xo) =
(200, 0) satisfies the first constraint in our model, but it does not satisfy the second
constraint, which requires that no more than 1,566 labor hours be used (because
9 X 200 + 6 X 0 = 1,800). So, what values for X; and X, will satisfy both of these
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constraints simultaneously? To answer this question, we also need to plot the second
constraint on the graph. This is done in the same manner as before—by locating two
points on the boundary line of the constraint and connecting these points with a
straight line.

The boundary line for the second constraint in our model is given by:

9X; + 6X; = 1,566 2.27

If X; = 0 in equation 2.27, then X; = 1,566/6 = 261. So, the point (0, 261) must fall on
the line defined by equation 2.27. Similarly, if X, =0 in equation 2.27, then X; =
1,566/9 = 174. So, the point (174, 0) also must fall on this line. These two points are
plotted on the graph and connected with a straight line representing equation 2.27, as
shown in Figure 2.2.

The line drawn in Figure 2.2 representing equation 2.27 is the boundary line for our
second constraint. To determine the area on the graph that corresponds to feasible solu-
tions to the second constraint, we again need to test a point on either side of this line to
see if it is feasible. The point (X1, X) = (0, 0) satisfies 9X; + 6X, < 1,566. Therefore, all
points on the same side of the boundary line satisfy this constraint.

2.10.3 PLOTTING THE THIRD CONSTRAINT

To find the set of values for X; and X; that satisfies all the constraints in the model, we
need to plot the third constraint. This constraint requires that no more than 2,880 feet of
tubing be used in producing the hot tubs. Again, we will find two points on the graph
that fall on the boundary line for this constraint and connect them with a straight line.

FIGURE 2.1

Graphical
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the pump
constraint



FIGURE 2.2

Graphical
representation of
the pump and

* labor constraints

28 Chapter 2 Introduction to Optimization and Linear Programming

(0, 261)

Boundary line of
labor constraint:

150 9X; + 6X, = 1566
100
Boundary line of
50 - pump constraint
(174,0)
0 | T T | I X
0 50 100 150 200 250 1

The boundary line for the third constraint in our model is:
12Xy + 16X; = 2,880 2.28

If X; = 0 in equation 2.28, then X, = 2,880/16 = 180. So, the point (0, 180) must fall on
the line defined by equation 2.28. Similarly, if X, =0 in equation 2.28, then X; =
2,880/12 = 240. So, the point (240, 0) also must fall on this line. These two points are
plotted on the graph and connected with a straight line representing equation 2.28, as
shown in Figure 2.3.

Again, the line drawn in Figure 2.3 representing equation 2.28 is the boundary line
for our third constraint. To determine the area on the graph that corresponds to feasible
solutions to this constraint, we need to test a point on either side of this line to see if it is
feasible. The point (X3, X5) = (0, 0) satisfies 12X; + 16X, < 2,880. Therefore, all points on
the same side of the boundary line satisfy this constraint.

2.10.4 THE FEASIBLE REGION

It is now easy to see which points satisfy all the constraints in our model. These points
correspond to the shaded area in Figure 2.3, labeled “Feasible Region.” The feasible
region is the set of points or values that the decision variables can assume and simulta-
neously satisfy all the constraints in the problem. Take a moment now to carefully com-
pare the graphs in Figures 2.1, 2.2, and 2.3. In particular, notice that when we added the
second constraint in Figure 2.2, some of the feasible solutions associated with the first
constraint were eliminated because these solutions did not satisfy the second constraint.
Similarly, when we added the third constraint in Figure 2.3, another portion of the
feasible solutions for the first constraint was eliminated.
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2.10.5 PLOTTING THE OBJECTIVE FUNCTION

Now that we have isolated the set of feasible solutions to our LP problem, we need to
determine which of these solutions is best. That is, we must determine which point in
the feasible region will maximize the value of the objective function in our model. At
first glance, it might seem that trying to locate this point is like searching for a needle in
a haystack. After all, as shown by the shaded region in Figure 2.3, there are an infinite
number of feasible solutions to this problem. Fortunately, it is easy to eliminate most of
the feasible solutions in an LP problem from consideration. It can be shown that if an LP
problem has an optimal solution with a finite objective function value, this solution
always will occur at a point in the feasible region where two or more of the boundary
lines of the constraints intersect. These points of intersection are sometimes called
corner points or extreme points of the feasible region.

To see why the finite optimal solution to an LP problem occurs at an extreme point
of the feasible region, consider the relationship between the objective function and
the feasible region of our example LP model. Suppose we are interested in finding the
values of X; and X; associated with a given level of profit, such as $35,000. Then, math-
ematically, we are interested in finding the points (Xi, Xz) for which our objective func-
tion equals $35,000, or where:

$350X; + $300X; = $35,000 2.29

This equation defines a straight line, which we can plot on our graph. Specifically, if
X1 = 0 then, from eqﬁation 2.29, Xp = 116.67. Similarly, if X, = 0 in equation 2.29, then
X1 = 100. So, the points (X1, X2) = (0, 116.67) and (X3, Xp) = (100, 0) both fall on the line
defining a profit level of $35,000. (Note that all the points on this line produce a profit
level of $35,000.) This line is shown in Figure 2.4.

FIGURE 2.3

Graphical
representation of
the feasible region
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Now, suppose we are interested in finding the values of X; and X, that produce some
higher level of profit, such as $52,500. Then, mathematically, we are interested in finding
the points (X3, X2) for which our objective function equals $52,500, or where:

$350X; + $300X; = $52,500 2.30

This equation also defines a straight line, which we could plot on our graph. If we do
this, we'll find that the points (X1, Xz) = (0, 175) and (X3, X3) = (150, 0) both fall on this
line, as shown in Figure 2.5.

2.10.6 FINDING THE OPTIMAL SOLUTION
USING LEVEL CURVES

The lines in Figure 2.5 representing the two objective function values are sometimes
referred to as level curves because they represent different levels or values of the objec-
tive. Note that the two level curves in Figure 2.5 are parallel to one another. If we repeat this
process of drawing lines associated with larger and larger values of our objective function,
we will continue to observe a series of parallel lines shifting away from the origin—that is,
away from the point (0, 0). The very last level curve we can draw that still intersects the
feasible region will determine the maximum profit we can achieve. This point of intersec-
tion, shown in Figure 2.6, represents the optimal feasible solution to the problem.

As shown in Figure 2.6, the optimal solution to our example problem occurs at the
point where the largest possible level curve intersects the feasible region at a single
point. This is the feasible point that produces the largest profit for Blue Ridge Hot Tubs.
But how do we figure out exactly what point this is and how much profit it provides?
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If you compare Figure 2.6 to Figure 2.3, you see that the optithal solution occurs
where the boundary lines of the pump and labor constraints intersect (or are equal).
Thus, the optimal solution is defined by the point (Xi, X,) that simultaneously satisfies
equations 2.26 and 2.27, which are repeated below:

X1+ X = 200
9X; + 6X; = 1,566

From the first equation, we easily conclude that X, = 200 — X;j. If we substitute this
definition of X; into the second equation we obtain:

9Xj + 6(200 — X;) = 1,566

Using simple algebra, we can solve this equation to find that X; = 122. And because
Xz =200 — X;, we can conclude that X; = 78. Therefore, we have determined that the op-
timal solution to our example problem occurs at the point (X, X;) = (122, 78). This point
satisfies all the constraints in our model and corresponds to the point in Figure 2.6 iden-
tified as the optimal solution.

The total profit associated with this solution is found by substituting the optimal val-
ues of X; = 122 and X, = 78 into the objective function. Thus, Blue Ridge Hot Tubs can
realize a profit of $66,100 if it produces 122 Aqua-Spas and 78 Hydro-Luxes ($350 X
122 + $300 X 78 = $66,100). Any other production plan results in a lower total profit. In
particular, note that the solution we found earlier using the intuitive approach (which
produced a total profit of $60,900) is inferior to the optimal solution identified here.

2.10.7 FINDING THE OPTIMAL SOLUTION
BY ENUMERATING THE CORNER POINTS

Earlier, we indicated that if an LP problem has a finite optimal solution, this solution al-
ways will occur at some corner point of the feasible region. So, another way of solving
an LP problem is to identify all the corner points, or extreme points, of the feasible re-
gion and calculate the value of the objective function at each of these points. The corner
point with the largest objective function value is the optimal solution to the problem.

This approach is illustrated in Figure 2.7, where the X; and X, coordinates for each of
the extreme points are identified along with the associated objective function values. As
expected, this analysis also indicates that the point (X;, Xp) = (122, 78) is optimal.

Enumerating the corner points to identify the optimal solution is often more difficult
than the level curve approach because it requires that you identify the coordinates for all
the extreme points of the feasible region. If there are many intersecting constraints, the
number of extreme points can become rather large, making this procedure very tedious.
Also, a special condition exists for which this procedure will not work. This condition,
known as an unbounded solution, is described shortly.

2.10.8 SUMMARY OF GRAPHICAL
SOLUTION TO LP PROBLEMS

To summarize this section, a two-variable LP problem is solved graphically by perform-
ing these steps:

1. Plot the boundary line of each constraint in the model.
2. Identify the feasible region, that is, the set of points on the graph that simultaneously
satisfies all the constraints.
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3. Locate the optimal solution by one of the following methods:

a. Plot one or more level curves for the objective function and determine the direc-
tion in which parallel shifts in this line produce improved objective function val-
ues. Shift the level curve in a parallel manner in the improving direction until it
intersects the feasible region at a single point. Then find the coordinates for this
point. This is the optimal solution.

b. Identify the coordinates of all the extreme points of the feasible region and cal-
culate the objective function values associated with each point. If the feasible re-
gion is bounded, the point with the best objective function value is the optimal
solution.

2.10.9 UNDERSTANDING HOW THINGS CHANGE

It is important to realize that if changes occur in any of the coefficients in the objective
function or constraints of this problem, then the level curve, feasible region, and optimal
solution to this problem also might change. To be an effective LP modeler, it is important
for you to develop some intuition about how changes in various coefficients in the
model will affect the solution to the problem. We will study this in greater detail in
Chapter 4 when discussing sensitivity analysis. However, the spreadsheet shown in
Figure 2.8 (and in the file named Fig2-8.xIs on your data disk) allows you to change any
of the coefficients in this problem and, instantly, see its effect. You are encouraged to
experiment with this file to make sure that you understand the relationships between
various model coefficients and their impact on this LP problem. (Case 2-1 at the end of
this chapter asks some specific questions that can be answered using the spreadsheet
shown in Figure 2.8.)

FIGURE 2.7
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2.11 Special Conditions in LP Models

Several special conditions can arise in LP modeling: alternate optimal solutions, redundant
constraints, unbounded solutions, and infeasibility. The first two conditions do not prevent
you from solving an LP model and are not really problems—they are just anomalies that
sometimes occur. On the other hand, the last two conditions represent real problems
that prevent us from solving an LP model.

2.11.1 ALTERNATE OPTIMAL SOLUTIONS

Some LP models can have more than one optimal solution, or alternate optimal solutions.
That is, there can be more than one feasible point that maximizes (or minimizes) the
value of the objective function.

For example, suppose Howie can increase the price of Aqua-Spas to the point at
which each unit sold generates a profit of $450 rather than $350. The revised LP model
for this problem is:

MAX: 450X; + 300X,
Subject to: 1X; + 1X; < 200
9X1 + 6X; < 1,566
12X; + 16X; < 2,880
1Xq > 0
11X, > 0

Because none of the constraints changed, the feasible region for this model is the same
as for the earlier example. The only difference in this model is the objective function.
Therefore, the level curves for the objective function are different from what we observed
earlier. Several level curves for this model are plotted with its feasible region in Figure 2.9.
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Notice that the final level curve in Figure 2.9 intersects the feasible region along an
edge of the feasible region rather than at a single point. All the points on the line segment
joining the corner point at (122, 78) to the corner point at (174, 0) produce the same op-
timal objective function value of $78,300 for this problem. Thus, all these points are al-
ternate optimal solutions to the problem. If we used a computer to solve this problem, it
would identify only one of the corner points of this edge as the optimal solution.

The fact that alternate optimal solutions sometimes occur is really not a problem
because this anomaly does not prevent us from finding an optimal solution to the
problem. In fact, in Chapter 7, “Goal Programming and Multiple Objective Optimiza-
tion,” you will see that alternate optimal solutions are sometimes very desirable.

2.11.2 REDUNDANT CONSTRAINTS

Redundant constraints present another special condition that sometimes occurs in an
LP model. A redundant constraint is a constraint that plays no role in determining the
feasible region of the problem. For example, in the hot tub example, suppose that
225 hot tub pumps are available instead of 200. The earlier LP model can be modified as
follows to reflect this change:

MAX: 350X; + 300X,
Subject to: X + 1X; < 225
9X; + 6Xp < 1,566
: 12X; + 16X, < 2,880
1X4 > 0
1X2 > 0

FIGURE 2.9
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This model is identical to the original model we formulated for this problem except
for the new upper limit on the first constraint (representing the number of pumps that
can be used). The constraints and feasible region for this revised model are shown in
Figure 2.10.

Notice that the pump constraint in this model no longer plays any role in defining the
feasible region of the problem. That is, as long as the tubing constraint and labor con-
straints are satisfied (which is always the case for any feasible solution), then the pump
constraint will also be satisfied. Therefore, we can remove the pump constraint from the
model without changing the feasible region of the problem—the constraint is simply
redundant.

The fact that the pump constraint does not play a role in defining the feasible region
in Figure 2.10 implies that there will always be an excess number of pumps available.
Because none of the feasible solutions identified in Figure 2.10 fall on the boundary line
of the pump constraint, this constraint will always be satisfied as a strict inequality
(1X; + 1X; < 225) and never as a strict equality (1X; + 1X; = 225).

Again, redundant constraints are not really a problem. They do not prevent us (or the
computer) from finding the optimal solution to an LP problem. However, they do
represent “excess baggage” for the computer; so if you know that a constraint is redun-
dant, eliminating it saves the computer this excess work. On the other hand, if the
model you are working with will be modified and used repeatedly, it might be best to
leave any redundant constraints in the model because they might not be redundant in
the future. For example, from Figure 2.3, we know that if the availability of pumps is re-
turned to 200, then the pump constraint again plays an important role in defining the
feasible region (and optimal solution) of the problem.
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2.11.3 UNBOUNDED SOLUTIONS

When attempting to solve some LP problems, you might encounter situations in which
the objective function can be made infinitely large (in the case of a maximization prob-
lem) or infinitely small (in the case of a minimization problem). As an example, consider
this LP problem:

MAX: X1+ Xp
Subject to: X1+ X = 400
—X; + 2X; < 400
X1 > 0
X, > 0

The feasible region and some level curves for this problem are shown in Figure 2.11.
From this graph, you can see that as the level curves shift farther and farther away from
the origin, the objective function increases. Because the feasible region is not bounded
in this direction, you can continue shifting the level curve by an infinite amount and
make the objective function infinitely large.

Although it is not unusual to encounter an unbounded solution when solving an LP
model, such a solution indicates that there is something wrong with the formulation—
for example, one or more constraints were omitted from the formulation, or a “less
than” constraint was entered erroneously as a “greater than” constraint.

While describing how to find the optimal solution to an LP model by enumerating
corner points, we noted that this procedure will not always work if the feasible region
for the problem is unbounded. Figure 2.11 provides an example of such a situation. The
only extreme points for the feasible region in Figure 2.11 occur at the points (400, 0) and
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(133.3, 266.6). The objective function value at both of these points (#nd at any point on
the line segment joining them) is 400. By enumerating the extreme points for this prob-
lem, we might erroneously conclude that alternate optimal solutions to this problem
exist that produce an optimal objective function value of 400. This is true if the problem
involved minimizing the objective function. However, the goal here is to maximize the ob-
jective function value, which, as we have seen, can be done without limit. So, when
trying to solve an LP problem by enumerating the extreme points of an unbounded fea-
sible region, you also must check whether or not the objective function is unbounded.

2.11.4 INFEASIBILITY

An LP problem is infeasible if there is no way to satisfy all the constraints in the prob-
lem simultaneously. As an example, consider the LP model:

MAX: Xi+ Xo
Subject to: X; + X; <150
X; + Xo > 200
Xq > 0
X> 0

The feasible solutions for the first two constraints in this model are shown in Figure 2.12.
Notice that the feasible solutions to the first constraint fall on the left side of its boundary
line, whereas the feasible solutions to the second constraint fall on the right side of its
boundary line. Therefore, no possible values for X; and X; exist that satisfy both constraints
in the model simultaneously. In such a case, there are no feasible solutions to the problem.
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second constraint
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50 X +X%=150""
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Infeasibility can occur in LP problems, perhaps because of an error in the formulation
of the model—such as unintentionally making a “less than or equal to” constraint a
“greater than or equal to” constraint. Or there just might not be a way to satisfy all the
constraints in the model. In this case, constraints would have to be eliminated or loos-
ened to obtain a feasible region (and feasible solution) for the problem.-

Loosening constraints involves increasing the upper limits (or reducing the lower
limits) to expand the range of feasible solutions. For example, if we loosen the first
constraint in the previous model by changing the upper limit from 150 to 250, there is a
feasible region for the problem. Of course, loosening constraints should not be done
arbitrarily. In a real model, the value 150 would represent some actual characteristic of
the decision problem (such as the number of pumps available to make hot tubs). We
obviously cannot change this value to 250 unless it is appropriate to do so—that is, un-
less we know another 100 pumps can be obtained.

2.12 Summary

This chapter provided an introduction to an area of management science known as
mathematical programming (MP), or optimization. Optimization covers a broad range
of problems that share a common goal—determining the values for the decision vari-
ables in a problem that will maximize (or minimize) some objective function while sat-
isfying various constraints. Constraints impose restrictions on the values that can be
assumed by the decision variables and define the set of feasible options (or the feasible
region) for the problem.

Linear programming (LP) problems represent a special category of MP problems in
which the objective function and all the constraints can be expressed as linear combina-
tions of the decision variables. Simple, two-variable LP problems can be solved graphi-
cally by identifying the feasible region and plotting level curves for the objective
function. An optimal solution to an LP problem always occurs at a corner point of its
feasible region (unless the objective function is unbounded).

Some anomalies can occur in optimization problems; these include alternate optimal
solutions, redundant constraints, unbounded solutions, and infeasibility.
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Questions and Problems

1. An LP model can have more than one optimal solution. Is it possible for an LP model
to have exactly two optimal solutions? Why or why not?

2. In the solution tg the Blue Ridge Hot Tubs problem, the optimal values for X; and X;
turned out to be integers (whole numbers). Is this a general property of the solutions
to LP problems? In other words, will the solution to an LP problem always consist of
integers? Why or why not?
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. To determine the feasible region associated with “less than or-equal to” constraints

or “greater than or equal to” constraints, we graphed these constraints as if they
were “equal to” constraints. Why is this possible?

. Are the following objective functions for an LP model equivalent? That is, if they are

both used, one at a time, to solve a problem with exactly the same constraints, will
the optimal values for X; and X; be the same in both cases? Why or why not?

MAX: 2X; + 3Xp
MIN: —2X1 - 3X2

. Which of the following constraints are not linear or cannot be included as a con-

straint in a linear programming problem?
a. 2X3+ Xz —3X3 =50
b. 2X; + VX; > 60
c. 4X1—Xo=75
31+ 2X; = 3Xs _ g9
X1 +Xo+Xs
e. 3Xi+7X; <45

. Solve the following LP problem graphically by enumerating the corner points.

MAX: 3X1 + 4Xp
Subject to: X1 < 12
X; <10
4X; + 6Xp <72
X, Xo > 0
. Solve the following LP problem graphically using level curves.
MIN: 2X; + 3Xz
Subject to: 2X; + 1X; > 3
4X; + 5X; = 20
2X; + 8X; > 16
5X1 + 6X; < 60
X, X2 = 0

Solve the following LP problem graphically using level curves.

MAX: 2X; + 5X,
Subject to: 6X1 + 5X; < 60
2X1 + 3X; < 24
3X; + 6X; < 48
X, X > 0

Solve the following LP problem graphically by enumerating the corner points.

MIN: 5X; + 20X,
Subject to: X1+ X > 12
2X; + 5Xp > 40
X1+ X, <15
X, X > 0
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Consider the following LP problem.

MAX: 3X1 + 2X,
Subject to: 3X1 + 3X; < 300
6X; + 3Xp; < 480
3X; + 3X; < 480
Xy, X2 0

a. Sketch the feasible region for this model.

b. What is the optimal solution?

c. Identify any redundant constraints in this model.

Solve the following LP problem graphically by enumerating the corner points.

MAX: 10X; + 12X,
Subject to: 8X; + 6X; < 98
6X; + 8X; < 98
X1+ X; > 14
Xy, X2 =2 0
Solve the following LP problem using level curves.
MAX: 4X; + 5%,
Subject to: 2X; + 3X; < 120
4X; + 3X; < 140
X1+ X; > 80
Xy, Xp > 0

The marketing manager for Mountain Mist soda needs to decide how many TV
spots and magazine ads to run during the next quarter. Each TV spot costs $5,000
and is expected to increase sales by 300,000 cans. Each magazine ad costs $2,000 and
is expected to increase sales by 500,000 cans. A total of $100,000 may be spent on TV
and magazine ads; however, Mountain Mist wants to spend no more than $70,000 on
TV spots and no more than $50,000 on magazine ads. Mountain Mist earns a profit
of $0.05 on each can it sells.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this model.

c. Find the optimal solution to the problem using level curves.

Blacktop Refining extracts minerals from ore mined at two different sites in Mon-
tana. Each ton of ore type 1 contains 20% copper, 20% zinc and 15% magnesium.
Each ton of ore type 2 contains 30% copper, 25% zinc and 10% magnesium. Ore type
1 costs $90 per ton and ore type 2 costs $120 per ton. Blacktop would like to buy
enough ore to extract at least 8 tons of copper, 6 tons of zinc, and 5 tons of magne-
sium in the least costly manner.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this problem.

c. Find the optimal solution.

The Electrotech Corporation manufactures two industrial-sized electrical devices:
generators and alternators. Both of these products require wiring and testing during
the assembly process. Each generator requires 2 hours of wiring and 1 hour of test-
ing and can be sold for a $250 profit. Each alternator requires 3 hours of wiring and
2 hours of testing and can be sold for a $150 profit. There are 260 hours of wiring
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time and 140 hours of testing time available in the next production period and Elec-

trotech wants to maximize profit.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this problem.

c. Determine the optimal solution to this problem using level curves.

Refer to the previous question. Suppose that Electrotech’s management decides that

they need to make at least 20 generators and at least 20 alternators.

a. Reformulate your LP model to account for this change.

b. Sketch the feasible region for this problem.

c. Determine the optimal solution to this problem by enumerating the corner points.

d. Suppose that Electrotech can acquire additional wiring time at a very favorable
cost. Should it do so? Why or why not?

Bill's Grill is a popular college restaurant that is famous for its hamburgers.

The owner of the restaurant, Bill, mixes fresh ground beef and pork with a secret

ingredient to make delicious quarter-pound hamburgers that are advertised as hav-

ing no more than 25% fat. Bill can buy beef containing 80% meat and 20% fat at $0.85

per pound. He can buy pork containing 70% meat and 30% fat at $0.65 per pound.

Bill wants to determine the minimum cost way to blend the beef and pork to make

hamburgers that have no more than 25% fat.

a. Formulate an LP model for this problem. (Hint: The decision variables for this
problem represent the percentage of beef and the percentage of pork to combine.)

b. Sketch the feasible region for this problem.

c. Determine the optimal solution to this problem by enumerating the corner points.

Zippy motorcycle manufacturing produces two popular pocket bikes (miniature

motorcycles with 49cc engines): the Razor and the Zoomer. In the coming week, the

manufacturer wants to produce a total of up to 700 bikes and wants to ensure that

the number of Razors produced does not exceed the number of Zoomers by more

than 300. Each Razor produced and sold results in a profit of $70, and each Zoomer

results in a profit of $40. The bikes are identical mechanically and differ only in the

appearance of the polymer-based trim around the fuel tank and seat. Each Razor’s

trim requires 2 pounds of polymer and 3 hours of production time, and each Zoomer

requires 1 pound of polymer and 4 hours of production time. Assume that 900

pounds of polymer and 2400 labor hours are available for production of these items

in the coming week.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this problem.

c. What is the optimal solution?

The Quality Desk Company makes two types of computer desks from laminated

particle board. The Presidential model requires 30 square feet of particle board,

1 keyboard sliding mechanism, and 5 hours of labor to fabricate. It sells for $149. The

Senator model requires 24 square feet of particle board, 1 keyboard sliding mecha-

nism, and 3 hours of labor to fabricate. It sells for $135. In the coming week, the com-

pany can buy up to 15,000 square feet of particle board at $1.35 per square foot and

up to 600 keyboard sliding mechanisms at a cost of $4.75 each. The company views

manufacturing labor as a fixed cost and has 3000 labor hours available in the coming

week for the fabrication of these desks.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this problem.

c. What is the optimal solution?

A farmer in Georgia has a 100-acre farm on which to plant watermelons and can-

taloupes. Every acre planted with watermelons requires 50 gallons of water per day

and must be prepared for planting with 20 pounds of fertilizer. Every acre planted
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with cantaloupes requires 75 gallons of water per day and must be prepared for
planting with 15 pounds of fertilizer. The farmer estimates that it will take 2 hours of
labor to harvest each acre planted with watermelons and 2.5 hours to harvest each
acre planted with cantaloupes. He believes that watermelons will sell for about $3
each, and cantaloupes will sell for about $1 each. Every acre planted with watermel-
ons is expected to yield 90 salable units. Every acre planted with cantaloupes is ex-
pected to yield 300 salable units. The farmer can pump about 6,000 gallons of water
per day for irrigation purposes from a shallow well. He can buy as much fertilizer as
he needs at a cost of $10 per 50-pound bag. Finally, the farmer can hire laborers to
harvest the fields at a rate of $5 per hour. If the farmer sells all the watermelons and
cantaloupes he produces, how many acres of each crop should the farmer plant to
maximize profits?

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this model.

c. Find the optimal solution to the problem using level curves.

Sanderson Manufacturing produces ornate, decorative wood frame doors and win-
dows. Each item produced goes through 3 manufacturing processes: cutting, sand-
ing, and finishing. Each door produced requires 1 hour in cutting, 30 minutes in
sanding, and 30 minutes in finishing. Each window requires 30 minutes in cutting,
45 minutes in sanding, and 1 hour in finishing. In the coming week Sanderson has
40 hours of cutting capacity available, 40 hours of sanding capacity, and 60 hours of
finishing capacity. Assume that all doors produced can be sold for a profit of $500
and all windows can be sold for a profit of $400.

a. Formulate an LP model for this problem.

b. Sketch the feasible region.

c. What is the optimal solution?

PC-Express is a computer retail store that sells two kinds of microcomputers: desk-
tops and laptops. The company earns $600 on each desktop computer it sells and
$900 on each laptop. The microcomputers PC-Express sells are manufactured by
another company. This manufacturer has a special order to fill for another customer
and cannot ship more than 80 desktop computers and 75 laptops to PC-Express next
month. The employees at PC-Express must spend about 2 hours installing software
and checking each desktop computer they sell. They spend roughly 3 hours to com-
plete this process for laptop computers. They expect to have about 300 hours avail-
able for this purpose during the next month. The store’s management is fairly cer-
tain that they can sell all the computers they order, but are unsure how many
desktops and laptops they should order to maximize profits.

a. Formulate an LP model for this problem.

b. Sketch the feasible region for this model.

c. Find the optimal solution to the problem by enumerating the corner points.
American Auto is evaluating their marketing plan for the sedans, SUVs, and trucks
they produce. A TV ad featuring this SUV has been developed. The company esti-
mates that each showing of this commercial will cost $500,000 and increase sales of
SUVs by 3%, but reduce sales of trucks by 1%, and have no effect of the sales of
sedans. The company also has a print ad campaign developed that it can run in vari-
ous nationally distributed magazines at a cost of $750,000 per title. It is estimated that
each magazine title the ad runs in will increase the sales of sedans, SUVs, and trucks
by 2%, 1%, and«4%, respectively. The company desires to increase sales of sedans,
SUVs, and trucks by at least 3%, 14%, and 4%, respectively, in the least costly manner.
a. Formulate an LP model for this problem.

b. Sketch the feasible region.

c. What is the optimal solution?
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For the Lines They Are A-Changin’
(with apologies to Bob Dylan)

The owner of Blue Ridge Hot Tubs, Howie Jones, has asked for your assistance in ana-
lyzing how the feasible region and solution to his production problem might change in
response to changes in various parameters in the LP model. He is hoping that this might
further his understanding of LP and how the constraints, objective function, and opti-
mal solution interrelate. To assist in this process, he asked a consulting firm to develop
the spreadsheet shown earlier in Figure 2.8 (and the file Fig. 2-8.xIs on your data disk)
that dynamically updates the feasible region and optimal solution and the various pa-
rameters in the model change. Unfortunately, Howie has not had much time to play
around with this spreadsheet, so he has left it in your hands and asked you to use it to
answer the following questions. (Click the Reset button in file Fig. 2-8.xls before an-
swering each of the following questions.)

Note: The file Fig2-8.xls contains a macro that must be enabled for the workbook to
operate correctly. To allow this (and other) macros to run in Excel click: Office button,
Excel options, Trust Center, Trust Center Settings, Macro Settings, select “Disable all
macros with notification”, click OK. Then when Excel opens a workbook containing
macros it will display a security warning indicating some active content has been dis-
abled and will give you the opportunity to enable this content, which you should do for
the Excel files accompanying this book.

a. In the optimal solution to this problem, how many pumps, hours of labor, and feet
of tubing are being used?

b. If the company could increase the number of pumps available, should they? Why or
why not? And if so, what is the maximum number of additional pumps that they
should consider acquiring, and by how much would this increase profit?

c. If the company could acquire more labor hours, should they? Why or why not? If so,
how much additional labor should they consider acquiring and by how much
would this increase profit?

d. If the company could acquire more tubing, should they? Why or why not? If so, how
additional tubing should they consider acquiring and how much would this in-
crease profit?

e. By how much would profit increase if the company could reduce the labor required
to produce Aqua-Spas from 9 to 8 hours? And from 8 to 7 hours? And from 7 to
6 hours?

f. By how much would profit increase if the company could reduce the labor required
to produce Hydro-Luxes from 6 to 5 hours? And from 5 to 4 hours? And from 4 to
3 hours?

g. By how much would profit increase if the company could reduce the amount of tub-
ing required to produce Aqua-Spas from 12 to 11 feet? And from 11 to 10 feet? And
from 10 to 9 feet?

h. By how much would profit increase if the company could reduce the amount of tub-
ing required to produce Hydro-Luxes from 16 to 15 feet? And from 15 to 14 feet?
And from 14 to 13 feet?

i. By how much would the unit profit on Aqua-Spas have to change before the optimal
product mix changes?

j. By how much would the unit profit on Hydro-Luxes have to change before the opti-
mal product mix changes?





