Lecture 7 – THC & El Nino

- Atmospheric and ocean circulations.
- El Nino.

OCEAN CIRCULATION

It was identified that the oceans store an immense amount of heat energy, and consequently play a crucial role in the regulation of the global climate system.

At present, northern maritime Europe is warmed by heat carried polewards by the Gulf Stream. When the warm water meets cold polar air in the North Atlantic, heat is released to the atmosphere and the water cools and sinks. This is assisted by the increases in salinity (and therefore density) that occur when sea ice forms in the Arctic regions. The bottom water so formed, called the North Atlantic Deep Water (NADW), flows southward through the western Atlantic, round Southern Africa and Australia, and then northwards into the Pacific Ocean. The North Atlantic is warmer than the North Pacific. The increased evaporation there therefore serves to increase salinity, relative to the North Pacific. This salinity gradient is thought to drive the global thermohaline ocean circulation. Such a picture of thermohaline circulation is schematised in Figure 2.6.

Lecture 7

https://www.youtube.com/watch?v=0ljvLavB23Q

Published on Jul 25, 2012
New satellite images have revealed almost all of Greenland's surface ice has suddenly started melting.
Published on Jul 25, 2012
On July 8, NASA satellite imagery showed about 40 percent of Greenland's top ice layer intact. By July 12, only four days later, 97 percent of the ice had melted. Margaret Warner asks NASA's [Greenland Goes Green: Ice Sheet Melted in Four Days]

Lecture 7

Region	<u>Period</u>	Impact
Indonesia	Life of event	Drier
Northeast Brazil	March-May	Drier
Central America /Mexico	May-October	Drier
West Coast South America	March-May	Wetter
Central South America	June-December	Wetter
Southeast Africa	December-February	Drier

<u>Typical Global La Niña Impacts</u>				
Region	Period	<u>Impact</u>		
Indonesia	Life of event	Wetter		
Northeast Brazil	March-May	Wetter		
Central America /Mexico	May-October	Wetter		
West Coast South America	March-May	Drier		
Central South America	June-December	Drier		
Southeast Africa	December-February	Wetter		
	Lecture 7	28		

Some of the abnormal weather pattern observed during El Nino (1982-83)

	Drought in Southern Africa, Southern India, Sri Lanka, Philippines, Indonesia, Australia, Southern Peru, Western Bolivia, Mexico, Central America
	Heavy rain and flooding in Bolivia, Ecuador, Northern Peru, Cuba, U.S. Gulf States
5	Hurricanes in Tahiti, Hawaii
	Lecture 7 29

EII	Nino (Spanish name for the male child)	Previous El	Niño Years		
•	appearing annually around Christmas time along the coast of Ecuador and Peru (not good for their fishing industry and guano birdst)	1902-1903	1905-1906	1911-1912	1914-1915
		1918-1919	1923-1924	1925-1926	1930-1931
•	can produce significant economic and atmospheric consequences worldwide	1932-1933	1939-1940	1941-1942	1951-1952
•	occur every 3-7 years, lasting about one year Recent major events: 1982- 1983 and 1997-1998	1953-1954	1957-1958	1965-1966	1969-1970
		1972-1973	1976-1977	1982-1983	1986-1987
•		1991-1992	1994-1995	1997-1998	2002-2003
•	The 97-98 event was the strongest ever recorded!!	2006-2007	2009-2010	2012-2013	2015-2016

	El	Niño			La Niña	
Weak	Mod	Strong	Very Strong	Weak	Mod	Strong
1951-52	1963-64	1957-58	1982-83	1950-51	1955-56	1973-74
1952-53	1986-87	1965-66	1997-98	1954-55	1970-71	1975-76
1953-54	1987-88	1972-73	2015-16	1964-65	1998-99	1988-89
1958-59	1991-92			1967-68	1999-00	
1968-69	2002-03			1971-72	2007-08	
1969-70	2009-10			1974-75	2010-11	
1976-77				1983-84		
1977-78				1984-85		
1979-80				1995-96		
1994-95				2000-01		
2004-05				2011-12		
2006-07						

<u>I he table shows the impact of El Nino and La Nina</u> <u>over a decade</u>				
Year	Occurrence	Impact	Monsoon*	
2004	El Nino	Drought	88%	
2005	Neutral	Normal	101%	
2006	Neutral	Normal	103%	
2007	La Nina	Excess	110%	
2008	La Nina	Above normal	105%	
2009	El Nino	Severe drought	79%	
2010	La Nina	Normal	100%	
2011	La Nina	Normal	104%	
2012	Mild El Nino	Below normal	92%	
2013	Neutral	Above normal	106%	
* Monsoon as p	ercentage of 50-years a	average		
https://www.youtube.com/watch?v=fJVKpQKITsk&spfreload=10				

El Niño-Southern Oscillation (ENSO)

- El Niño (Spanish for "the Child" in reference to baby Jesus) = warm surface current in equatorial eastern Pacific that occurs periodically around Christmastime
- Southern Oscillation = change in atmospheric pressure over Pacific Ocean accompanying El Niño
- ENSO describes a combined oceanic-atmospheric disturbance

Lecture 7

ENSO Economic effects continues.....:

- ENSO Economic effects continues...... Economic Benefits Polar Jet Stream saving money:
- During El Nino in North America, the jet streams that travel 5 to 8 miles [8 to 13 kilometers] above Earth's surface shift dramatically. The polar jet stream tends to stay farther north over Canada than usual; as a result, less cold air moves into the upper United States. In fact, northern-tier states saved an estimated five billion dollars in heating costs during the 1997-98 El Niño.
- The potential uses of advance information are almost limitless: Governments and industries around the world can make planning for El Niño and La Niña pay off. For example, Kenyan coffee growers find their product in greater demand when droughts affect coffee harvests in Brazil and Indonesia. Palm oil production in the Philippines typically declines during El Niño, as does the squid catch off the California coast. Countries that anticipate these developments can fill the gaps and prosper.

Lecture 7

36

ENSO Economic effects continues......:

- Economic Loss The giant El Niño of 1997-98 had deranged weather patterns around the world, killed an estimated 2,100 people, and caused at least 33 billion [U.S.] dollars in property damage.
- In the U.S. mudslides and flash floods flattened communities from California to Mississippi, storms pounded the Gulf Coast, and tornadoes ripped Florida. By the time the debris settled and the collective misery was tallied, the devastation had in some respects exceeded even that of the El Niño of 1982-83, which killed 2,000 worldwide and caused about 13 billion dollars in damage. (Suplee, 1999)
- Just in USA, El Nino caused real economic losses such as storm damage or crop losses. These are losses that can't be prevented or reduced by a better forecast or mitigation. For example, on average, El Ninos resulted in agricultural losses approaching \$2 billion, or nearly 1-2 percent of total crop output.

Lecture 7

Evaporation	Increase salinity
Precipitation	Decrease salinity
Sea ice formation	Increase salinity
Run off	Decrease salinity
Ice melting	Decrease salinity

Lecture 7