

Predicted effects of global warming

- **Rising Sea Level** due to melting of glaciers and ice. With the increase in sea level many cities will be under water in few decades.
- Extreme Weather. Global warming will heat up oceans causing more intense hurricanes, typhoons; more thunderstorms, tornadoes and droughts.
- Agricultural Changes. Change in weather pattern and temperature will affect the agricultural industry. Extreme rainfalls and droughts will change the soil fertility.
- Loss of Species. Extreme climatic changes impact the habitat of animals at a pace that's too rapid for them to naturally evolve to meet successfully and the result will be loss of certain animal species.
- Economic Effects. Rise in food price, need of electricity to cool the space, rise in insurance cost, re-building cost of destruction after damage caused by extreme weathers.
- **Disease**. Resurgence (revival) of infectious diseases associated with bacteria that thrive in warm temperatures.
- Water Scarcity. Another effect of the rising sea levels will be the contamination of fresh water by salt water affecting drinking eater supply systems as well as proper irrigation of crops. Possibility of wars over water rights to get fresh water supply.

Lecture 4

D:\Bhakta Ale\MSc Program\ESPM\ESPM\Climate change and its impact on energy sector\Video clips\Global Warming 101.flv

Lecture 4

GHG	Sources
CO ₂	Natural: ocean, volcano, decomposition Anthropogenic: fossil fuel burning, exhaust
CH ₄	Natural: aerobic decomposition (wetland, cows, etc.) Anthropogenic: fossil fuel burning, agriculture
N ₂ O	Natural: soil and ocean Anthropogenic: fertilizer (nitrification of ammonium)
CFC/ HCFCs	Natural: x Anthropogenic: refrigerant, aerosol propellent
03	Natural: photolysis Anthropogenic: NOx + VOC
SF ₆	Natural: x Anthropogenic: insulator for high voltage equipment

- Carbon dioxide is the most important of the greenhouse gases that are increasing in atmospheric concentration because of human activities.
- The increase in carbon dioxide (CO₂) has contributed about 76% of the enhanced greenhouse effect to date, methane (CH₄) about 16% and nitrous oxide (N₂O) about 6.2% (AR5).

Lecture 4

GWP

- Global warming potentials (GWPs) are used to compare the abilities of different greenhouse gases to trap heat in the atmosphere. GWPs are based on the radiative efficiency (heat-absorbing ability) of each gas relative to that of carbon dioxide (CO₂), as well as the decay rate of each gas (the amount removed from the atmosphere over a given number of years) relative to that of CO₂.
- GWPs are an index for estimating relative global warming contribution due to atmospheric emission of a kg of a particular greenhouse gas compared to emission of a kg of carbon dioxide.

Lecture 4

Gas	1996 IPCC GWP ^a	2001 IPCC GWPb	2007 IPCC GWP ^c
Carbon Dioxide	1	1	1
Methane	21	23	25
Nitrous Oxide	310	296	298
HFC-23	11,700	12,000	14,800
HFC-125	2,800	3,400	3,500
HFC-134a	1,300	1,300	1,430
HFC-143a	3,800	4,300	4,470
HFC-152a	140	120	124
HFC-227ea	2,900	3,500	3,220
HFC-236fa	6,300	9,400	9,810
Perfluoromethane (CF ₄)	6,500	5,700	7,390
Perfluoroethane (C ₂ F ₆)	9,200	11,900	12,200
Sulfur Hexafluoride (SF ₆)	23,900	22,200	22,800

Table 3.1 Components of annual average global carbon budget for 1980s and
1990s in Gt of carbon per year (positive values are fluxes to the atmosphere,
negative values represent uptake from the atmosphere)

	1980s	1990s	2000-2005
Emissions (fossil fuel, cement)	5.4 ± 0.3	6.4 ± 0.4	7.2 ± 0.3
Atmospheric increase	3.3 ± 0.1	3.2 ± 0.1	4.1 ± 0.1
Ocean-atmosphere flux	-1.8 ± 0.8	-2.2 ± 0.4	-2.2 ± 0.5
Land-atmosphere flux"	-0.3 ± 0.9	-1.0 ± 0.6	-0.9 ± 0.6
partitioned as follows			
Land-use change	1.4 (0.6 to 2.3)	1.6 (0.5 to 2.7)	not available
Residual terrestrial sink	-1.7 (-3.4 to 0.2)	-2.6 (-4.3 to -0.9)	not available

16

22 Dec 2012 This visualization shows Saturday's extent of Arctic sea ice, as charted by the National Snow and Ice Data Center. The readings have been overlaid on NASA imagery of the Northern Hemisphere. The orange line indicates the median extent of sea ice on the same calendar date for the 1979-2000 time period.

Source:

http://photoblog.nbcnews.c om/_news/2012/12/23/1610 9972-satellites-check-inon-the-north-pole?lite

CO2 m	neasured at	Mauna L	Loa Obse	ervatory, Hav	wa
S.N.	Year		(CO ₂ ppm	
1	November	2012	3	92.95	
2	November	2013	3	95.19	
3	November 2014		3	397.22	
4	November 2015		4	400.24	
5	November 2016		4	403.64	
Station Name	Station Code	Latitude	Longitude	Elevation (m)	
Mauna Loa Observatory,	Hawaii MLO	19.5 °N Lecture 4	155.6 °W	3397	31

Videos in youtube

Global warming 101

- <u>https://www.youtube.com/watch?v=oJAbATJCugs</u>
- <u>https://www.youtube.com/watch?v=QL3ED6aXrks</u>
- <u>https://www.youtube.com/watch?v=5iT83MIAcxQ</u>
- <u>https://www.youtube.com/watch?v=dQC-S0UGJZA</u>
- https://www.youtube.com/watch?v=WheKvRTbysw
- https://www.youtube.com/watch?v=zGOqfmvt_fo

Lecture 4

33