

Components indep	endent from time and space		
nitrogen (N ₂)		78.08 vol. %; 75.53 mass %	
oxygen (O ₂)		20.95 vol. %; 23.14 mass %	
argon (Ar)		0.93 vol. %; 1.28 mass %	
further noble gases (He, Ne, Kr, Xe)		traces	
Components deper	ndent on time and space		
steam (H ₂ O)		depending on meteorological conditions up to 4 %	
carbon dioxide (CO ₂)		0.03 vol. %; 0.05 mass %; tendency currently increas-	
		ing	
admixtures			
gases	ozone (O ₃)	from the high atmosphere	
	radon (Rn)	from radioactive soil respiration	
	sulphur dioxide (SO2)	from e.g. volcanoes, post-volcanic activities	
	carbon monoxide (CO)	oxidizes into carbon dioxide (CO2) in the short term	
	methane (CH ₄)	from e.g. animal digestion, anaerobic fermentation	
	VOC	from plants	
Aerosols	gaseous aerosols	from gaseous reactions (sulphates, nitrates etc.)	
	dust	for example plain, desert, or volcano dust	
	plant ash	from forest and steppe fires	
	sea water salt	transferred into the air with breaking wave crests	
	biomass	for example micro-organisms, pollen	

 Table 2.1
 The ten countries on earth with the highest energy-related carbon dioxide emissions.

 Status: 2006. Data: IEA (International Energy Agency, 2008).

Country	MII. t CO₂	MII. Inhab.	t CO₂/ Inhab.	Country	MII. t CO ₂	MII. Inhab.	t CO₂/ Inhab.
1. USA	5697	299	19.00	6. Germany	823	82	10.00
2. China	5606	1312	4.27	7. Canada	539	33	16.52
3. Russia	1587	143	11.14	8. Great Britain	536	61	8.86
4. India	1250	1110	1.13	9. South Korea	476	48	9.86
5. Japan	1213	128	9.49	10. Italy	448	59	7.61
World	28003	6546	4.28	133. Mozambique	2	20	0.08
				Lecture 2			7

S.N.	Country	Mtoe CO2
1	China	7 366
2	United States	5 380
3	India	1 626
4	Russia	1 585
5	Japan	1 058
6	Germany	754
7	South Korea	545
8	Canada	522
9	United Kingdom	491
10	Saudi Arabia	452
Source:: <u>h</u>	ttp://yearbook.enerdata.net/2010-energy-consumption	-data.html#/2010-CO2-emissions-data-

	Thankfully, greenhouse gases also save the day! We know the average surface temperature of Earth is about 15°C, by back calculation we see: $4\sigma(T_E)^4 = 4\sigma(288K)^4 = 1560 \text{ W/m}^2$ GH Effect = 1560 W/m ² - 615 W/m ² = 945 W/m ²
Wait a second, there is another twist! About 25% of the incoming solar radiation is absorbed by various gases like H_2O , CO_2 , O_2 , and O_3 before it hits the surface. So the calculation would be: Input = Output $S_0(1 - \alpha - \text{atmos absorption}) = 4\sigma T_E^4$ $= 615 \text{ W/m^2}$ $T_E = (S_0(1 - \alpha - \text{atmos absorption})/4\sigma)^{1/4}$ $= 228\text{K} = .45^\circ\text{C} !!!$ Opps that's going the wrong direction!	Let us compare: solar input 1367 W/m ² greenhouse effect 945 W/m ² Thankfully, greenhouse gases also save the day! The greenhouse effect is HUGE ! From the "no atmosphere" model of -18°C to an observed average surface temp of 15°C, it is a +33°C effect ! Furthermore, if this were linear then we would get 1°C increase for every 7 W/m ² . Thankfully this is not the case, but adding more greenhouse gases into the atmosphere still poses an appreciable amount of warming to Earth!
Le	24

GHG	Sources
CO ₂	Natural: ocean, volcano, decomposition Anthropogenic: fossil fuel burning, exhaust
CH ₄	Natural: aerobic decomposition (wetland, cows, etc.) Anthropogenic: fossil fuel burning, agriculture
N ₂ O	Natural: soil and ocean Anthropogenic: fertilizer (nitrification of ammonium)
CFC/ HCFCs	Natural: x Anthropogenic: refrigerant, aerosol propellent
O ₃	Natural: photolysis Anthropogenic: NOx + VOC
SF ₆	Natural: x Anthropogenic: insulator for high voltage equipment

